Wnt-1 but not epidermal growth factor induces beta-catenin/T-cell factor-dependent transcription in esophageal cancer cells.

نویسندگان

  • Takaaki Mizushima
  • Hiroshi Nakagawa
  • Yana G Kamberov
  • Elizabeth L Wilder
  • Peter S Klein
  • Anil K Rustgi
چکیده

beta-Catenin plays an important role in signal transduction pathways that regulate cellular differentiation and proliferation. The increased concentration of this protein in the cytoplasm favors its binding to the T-cell factor (TCF) family of DNA-binding proteins, and it subsequently translocates to the nucleus, where it induces transcription of specific genes. We explored mechanisms that lead to activation of beta-catenin/TCF-dependent transcription in esophageal squamous cell carcinoma (ESCC) independent of adenomatous polyposis coli and beta-catenin mutation. Electrophoresis mobility shift assay demonstrated that TCF4 and beta-catenin form a complex and have DNA binding activity. However, there was no constitutive activation of beta-catenin/TCF-dependent transcription. Coculture experiments demonstrated that Wnt-1, but not Wnt-5A and Wnt-7A, activated the TCF reporter gene. Additionally, when cultured with Wnt-1-conditioned media, ESCC cell lines showed an accumulation of beta-catenin in the cytoplasm. Although both Wnt and epidermal growth factor inactivate glycogen synthase kinase 3beta, activation of epidermal growth factor receptor did not stabilize beta-catenin. A comparison of extracellular stimuli suggests that specific Wnt family members stabilize beta-catenin with resulting activation of TCF-dependent transcription in ESCC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the {beta}-catenin/T-cell-specific transcription factor/lymphoid enhancer factor-1 pathway by plasminogen activators in ECV304 carcinoma cells.

Besides its involvement in clot lysis, the plasminogen activator (PA) system elicits various cellular responses involved in cell migration, adhesion, and proliferation and plays a key role in the progression of cancers. beta-Catenin interacts with E-cadherins and functions as transcriptional coactivator of the Wnt-signaling pathway, which is implicated in tumor formation when aberrantly activat...

متن کامل

E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions.

E-cadherin function leads to the density-dependent contact inhibition of cell growth. Because cadherins control the overall state of cell contact, cytoskeletal organization, and the establishment of many other kinds of cell interactions, it remains unknown whether E-cadherin directly transduces growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic...

متن کامل

Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells.

Beta-catenin is the vertebrate homolog of the Drosophila segment polarity gene Armadillo and plays roles in both cell-cell adhesion and transduction of the Wnt signaling cascade. Recently, members of the Lef/Tcf transcription factor family have been identified as protein partners of beta-catenin, explaining how beta-catenin alters gene expression. Here we report that in T cells, Tcf-1 also beco...

متن کامل

WNT-1 Signaling Inhibits Apoptosis by Activating β-Catenin/T Cell Factor–Mediated Transcription

Wnt signaling plays a critical role in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of Wnt signaling, little is known regarding Wnt signaling modification of the cell death machinery. Given that numerous oncogenes transform cells by providing cell survival function, we hypothesized that Wnt signaling may inhibit apopt...

متن کامل

Overexpression of Icat induces G(2) arrest and cell death in tumor cell mutants for adenomatous polyposis coli, beta-catenin, or Axin.

Aberrant activation of Wnt signaling caused by mutations in adenomatous polyposis coli (APC) or beta-catenin is a critical event in the development of human colorectal tumors. Wnt signaling stabilizes beta-catenin, which in turn associates with TCF/LEF family transcription factors, ultimately altering the expression of Wnt target genes. We have recently identified ICAT, a beta-catenin-interacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 62 1  شماره 

صفحات  -

تاریخ انتشار 2002